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ABSTRACT

This Semiannual Technical Summary covers the period 4 October 1980
through 31 March 1984, It describes the significant results of the Lin-
coln Laboratory Multi-Dimensional Signal-Processing Research Pro-
gram, sponsored by the Rome Air Development Center, in the areas of
image segmentation and classification, adaptive contrast enhancement,
and {terative implementations for multi-dimensional digital filters.
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MULTI-DIMENSIONAL SIGNAL-PROCESSING
RESEARCH PROGRAM

1. INTRODUCTION AND SUMMARY

The Lincoln Laboratory Multi-Dimensional Signal-Processing Research
Program wag initiated in FY 80 as a research effort directed toward the de-
velopment and understanding of the theory of digital processing of multi-
dimensional signals and its application to real-time image processing and
analysis. A specific long-range application is the automated processing of
aerial reconnaissance imagery. Current research projects which support this
long-range goal are image modeling for segmentation and classificaetion, tech-
niques for adaptive contrast enhancement, iterative implementation of muiti-
dimensional digital filters, and multiprocessor architectures for {mplementing
image processing algerithms. Results in these research aress over the past
six months are described in this Semiannual Technical Summary.

—== [n the area of image segmentation and clasgsification, we have been devel~

oping a hierarchical segmentation scheme for proceasing images with several
region classes. This approach appears to offer improvements over a direct
multiclass segmentation. Examplea are given in Sec. 2,

LAdaptive contrast enhancement techniques have proved useful {n several
areas. We have used adaptive contrast enhancement as a preprocessor for
image segmentation based on texture rather than gray level. We have also
applied these techniques to aerial images degraded by light cloud cover and
haze. The primary effects of this type of degradation are a reduction {n con-
trast and an increase in the local average intensity of the image.. In Sec.3,
we show examples of the improvement which the adaptive contrast enhancement
techniques afford on images suffering from this type of degradation.

In Secs. 4 and 5 wefdiscuss twr a3pects of the iterative implementation
of multi-dimensional digital filters. ials .irat concerne zpatial truncation
effects which occur during the {teration because the image frame buffer has a
finite storage capability. The errors caused by this truncation are closely — -,




-

related to the solution of a boundary value problem with boundary conditions
specified on the frame edges. These errors can be eliminated by including
the boundary conditions in the gpatially truncated iteration, '
Section 5 discusse® potential multiprocessor architectures for realizing
multi-dimensional signal-processing operations such as those needed in the
iterative implementation. An underlying problem is the efficient partitioning
of multi-dimensioral signal-processing problems among the several proces-

sors in a muliiprocessor architecture. o

2. IMAGE SEGMENTATION

In the previous Semianrnual Technical Summary Report,1 we described s
segmentation procedure based on lirear filtering methods to model texture in
local regions of an image and a Markov random field to model region transi-
tiong within the image. We further showed application of this method to images
containing two region types. The segmentation algorithm described in Ref. {
is also applicable to cases where there are more than two types of regions in
the image. Th? conditions for the segmentation are as follows.

Assign a pixel with coordinates (n, m) to class i where { is the class for

which

Eiz(n, m) 2
. — * UM A
--—;?«—— tlne” ~2 Py [‘Isn,m] (1)
ts minimum. In the above expression, Ei is the error in linear prediction of
a pixel from a surrounding set of pixels, oiz ig the variance of the prediction

error, and Pr (i|§ } is the probability that the given pixel belongs to class i

given the clagses or}.:;“surmunding set of pixels. (See Refs.1 and 2 for more
details.) During the current reporting period, we have been applying the multi-
class form of the algorithm to aerial photographic data and experimenting v.ith
strategies for the segmentation of multiclass images. Our results indicate
that it is often better not to attempt to segment an image into a large number
of classes all at once. Instead, one can first segment the image into a few

categories and then perform additionsl segmentation within each category. We
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refer to this approach as a layered segmentation strategy. Several examples
of using this layered approach are described in the following paragraphs.

In Ref. 1 we stated how an image which had been segmented into tree and
field regions could be further segmented into regions containing only large or
only small trees. Figure {4 compares results of thisllayered segmentation
approach to a nonlayered approach for this image. The image in Fig. 1 (left)
was first segmented into the broad categories of trees and fields. Within the
tree category we further segmented the image into large and small tree re-
gions; in the field category we segmented the image into two different field
types. The region boundaries arising from this layered approach are shown
in color. (Note that the small field in the lower left-hand corner has the same
texture as the field adjacent to it and thus is not recognized as a separate re-
gion by the segmentation algorithm.) Figure { (right) shows the results of
sepmenting the image into the four regions in a single step. The regions iden-
tified by the algorithm are coded in different colors. Figure { shows that the
layered segmentation strategy produced a more accurate result. Although both
approaches gave quite accurate estimates of the boundary between the two field
types and the boundary between the trees and field, the layered approach was
able to make more subtle distinctions between the amall and large treea. Both
segmentation strategies had some problems near the boundaries of the image
due to the digcontinuities ariaing there but the problems were more apparent
in the spot near the left edge of the image in Fig. & (right). The results of this
comparison are not really surprising stnce in a four-category segmentation
there is more room for error in the classification of the individual pixels than
in successive two-category segmentations. A few points in the amall tree re-
gion classified as "field" during the initial claasification phage of the algorithm
can propagate their effects through the iteration employed in the algorithm and
lead to a final result that is incorrect. On the other hand, a layered approach
may preduce a large error in the initial categories that cannot be corrected at
successive levels of segmentation. Thua, one can expect that a layered ap-
proach will produce best results where there is clear separation between the
initial categories and subtle distinctions between the classes within those initial
categories.
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L Fig. 1. Comparigson of a layered segmentation (left) to a 4-class
3 segmentation (right) of a rural scene.
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Another approach to layered segmentation is to first segment the image
into regions representing various textures and a further category representing
constant tones (no texture). Within the nontextured regions we perforra a seg-
mentation based on gray level. The results are then combined to produce the
final segmentation of the image. This technique is particularly useful for the
following reason. In segmenting an image for texture it is desirable to remove
large overall variations in tonality and render the image an overall middle
gray.i‘2 This eliminates artifacts in the segmentation due to variations in
illumination, shadows, and so forth. However, preprocessing in this manner
removes tonal features in nontextured regions that may be important for a
complete and meaningful segmentation of the image. A meaningful result can
be obtained by using a layered approach where a texture-oriented segmentation
of the preprocessed image is followed by a gray-tone segmentation of the un-
processged image.

Iigure 2 illustrates this approach for a scene containing trees, water,
grasgs or fields, and a feature (apparently a road or bridge) passing over a
small stream. Iigure 2 (upper left) shows the original image and Fig, 2 (upper
rigit) shows the preprocessged version. Note that in the preprocessed image
the bright white area of the bridge has approximately the same tonal value as
the dark shadow under the bridge. Figure 2 (lower left) shows the result of
segmenting the original image into regions with three tonal values (dark, shown
in red, middle grays, shown in green, and light, shown in blue). IMgure 2
{lower right) shows the result of segmenting the preprocessed image into tex-
tures representing the trees (yellow), the grass aud field areuas (purple), and
the nontextured regions such as water, the bridge, and the shadows (light blue),
INgure 3 shows the original image with segmentation boundaries overlaid (be-
tween tree and field regions and between trees and water) in solid lines. In
addition, the boundary obtained by overlaying the tonal separation of Ig.2
(lower left) on the nont~xtured areas of Fig.2 (lower right) is shown in gray.
This permits us to obtain a mere accurate representation of the bridge segment.

As another example of this layered approach, consider the portion of the
scene shown in the white box in ¥ig. 4(a) and enlarged in Fig. 4{b). The en-
larged scene is 256 X 256 pixels in size and represents the full resolution of




Iig, 2. Layered approach to segmenting a rural scene with textured
and nontextured areas. Original image (upper left), preprocessed
image (upper right), texture segmentation (lower left), and gray-

level segmentation (lower right).
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Fig.3. Rural scene with boundaries
resulting from layered segmentation
superimpecsed,

to} b}

Fig.4. Enlarged portion of a river scene used for layered segmentation
experiment.
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the data. (The photograph from which the digital data were taken was scanned
at a resolution of 40 um.) Figure 5 shows the original image and the result
after segmenting the image into textured regions (trees) and nontextured re-
gions and applying three-level gray-tone segmentation within the nontextured
regions. Note that the dark shadows that the trees cast on the water are easily
gaparated from both the trees and the water using this procedure. The isola-
tion of shadowed areas may be important in deducing the height of objects in a
scene.

A final example of segmenting textured from nontextured regions is shown
in ¥ig. 6. The original scene of roadways connecting missile sites i1s shown in
the (a) part of the figure. The two-category segmented result is shown in tae
(b) portion. The segmentation of this scene is a difficult problem because the
roads tend to bleed into the surrounding terrain in many places and the pres-
ence of features on the reads (such as the objects in the corner of the parking
lot) tend to produce something like a small textured area. Nevertheless, a
fairly good approximation to the roadways is obtained. Ideally we would wish
to follow this texture segmentation with a gray-level segmentation to highlight
features in the road. However, these features, because of their gize, have
tended to be confused with he texture and thus many do not appear in the re-
gion designated by the algorithm as roadways. This is a problem that requires
additicnal work., The features in the roadway can perhaps be detected by
gcrutinizing the error residusls in the segmentation algorithms or possibly by
employing more texture classes.

Qur current research is directed toward resolving some of the problems
described above and to developing a method for automatic selection of the train-
ing data (by the segmentution algorithm), The latter would allow the segmenta-
tion algorithm to function in a nonsupervised mode and eliminate the need for
human interaction to define sets of training data.

3. TECHNIQUES FOR REMOVING DEGRADATIONS CAUSED
BY LIGHT CLOUD COVER

In this section, we will discuas the use of homomorphic filtering to expose
objects beneath light cloud cove:. In particular, a deterministic model of

13




Fig. 5.

Segmentation of the river scene in Fig. 4(b).
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(a)

e

(b)

Fig.6. Two-class segmentation of an aerial photograph of a missile site.
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imaging above cloud cover motivates an approach which utilizes an adaptive
homomorphic filter. This space-varying filter is parameterized by the local
‘ mean level which reflects the degree of the local degradation.

The approach we take is distinctly different from other homomorphic filter-
ing procedures for image enhancement or restoration. It differs from the work
of Mitchell and Delp,3 which recovers images degraded by light cloud cover,
since their scheme relies on a stochastic image. It differs from the deter-
ministic approach of Oppenheim et gl.‘} and (.‘:i.lkes5 for image enhancement of
cloudless images, since again theirs are nonadaptive procedures. In essence,
it is closer to the adaptive approaches of Peli and Lim™ and Gi.lkes5 where an
adaptive filter is parameterized by the local deterministic characteristics of
the data.

One long-space model of a cloudy image is described in Ref. 3. Specifi-
cally, this model of a cloudy image is stochastic and is a product of the cloud
transmigsion function and a function of the ideal image. Our cloudy image
model i8 deterministic and applies on a short-space bagis. It assures that
the logarithm of the image can be divided into two approximately disjoint spec~
tral bands: the cloud spectrum occupying low frequencies and the image spec~
trum occupying high frequencies. Although the image contains some low-
frequency information, we shall assume it ig not significant in exposing object
shapes under light cloud cover. In addition, we depart from a typical assump-
tion that the desired tmage itself can be mndeled as the product of {llumination,
a low-frequency component, and reflectivity, a high-frequency component.
Rather, we view the illumination component in the same way as we view the
reflectance component, i.e., as having an important high-frequency component
due to the interaction of light and ground objects.7 Furthermore, we assume
this high-frequency component is approximately digjoint from the cloud transfer
function which has a low-pass characteristic.

Before proceeding with the development of our new methods and compari-
sons, we review some important ideas and formulate a framework for our
investigations.

19




3.4 Modeling the Imaging Process

A number of approaches to modeling the imaging process have been pre-
sented in the literature. A more difficult problem is to model the imaging
process with light cloud cover. In this section, we first review one approach
to modeling undegraded images. Two different viewpoinis are presented which
rely on an illumination-reflectivity model. We then enter a stochastic frame-
work in which a model of images degraded by light cloud cover will be dis-
cussed. Finally, we present our own deterministic interpretation of cloudy
images.

In the formation of images, the illumination and reflectivity are combined
by a multiplication law:}

I(n, m) = i{n, m) - r(n, m) 2)

where i(n, m) and r(n, m) are the illuminance and reflectance components, re-
gspectively. One agsumption is that the illumination varies slowly (i.e., it con-
taing mainly low-frequency components) and the reflectance is sometimes dy-
namic and sometimes static and therefore may be regarded as containing mainly
high-frequency components. The logarithm operation separates the multiplica-
tive signal into two additive components:

log (I{n, m)} = log (i(n, m)} + log [r(n, m)] . (3)

If a linear amplifier or attenuator with gain o follows the log, the image out-
put is given by

I"(n,m) = [I(n.m)]Of . (4)

When o < {, we get a washed-out image and when o > 1, the image is sharpened
but might be saturated. If we want to reduce the dynamic range, which i{s con-
tributed mostly by the illumination, and increase the sharpness, which {8 con-
tributed mostly by the reflectance, we should choose a as a function of fre-
quency, {.e., o <1 for high frequencies as {n Fig. 7. This {s the essence of the
homomorphic filtering operation.

Since the {llumination is not exclusively low frequency and the reflectance
consists of both high- and low-frequency components, the output of the homo-
morphic filtering operation has some artifacts. It seems that the degree to

20
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Fig. 7. Variability of gain «
as a function of frequency.

which thoge artifacts are visible is strongly dependent on the way a changes
from e <1 to a >1. As pointed out by Schreiber, homomorphic filtering

can be replaced by a linear filter followed by a power law for low-contrast
images. Schreiber hypothesizes that in natural scenes, the illumination func-
tion is ag essgential to perception as the reflectivity of the object. Both have

a broad gpectrum, generally with more power at the low spatial frequencies.
The reflectance derives its low-frequency component from the presence of
large patches of relatively constant value. The illumination derives its high-
frequency component from interaction between the edges and surfaces of ob-
jects, which are at many different angles, and the incident light. Consequently,
any attempt to separate these components by homomorphic filtering will be
limited in its success. Instead, adaptive control of the low and high components
of the original signal ie preferable for enhancement.

Now let us examine one model of images degraded by cloud cover.3 In this
model the ground reflection passes through the clouds. The energy collected
above the cloud consists of two components: ground information and scatter-
ing from the clouds. Figure 8 is a simplified model of the imaging process.
The energy recorded is given by:

8(n, m) = aLlr{n,m) t(n,m) + L [1 -t(n,m)} (5)
where
L = sun illumination

a = attenuation of the illumination in a downward
direction (assumed constant}

21




r(n, m) = reflectance of the ground

t(n, m) = transmittance of the cloud (upward),
0 tin,m)<1

In order to recover the desired reflectance information, it was assumed
that the transfer function of the cloud and the reflectance of the ground are

N\ e
New V7

oLoup Fig.8. A simplified model
of imaging through clouds.

GROUND

rin, m)

stochastic processes. It was also assumed that the transmittance of the

cloud has relatively more energy in low spatial frequencies. From Eq. (5},
we can obtain a multiplicative form of the "noise and the "signal® given by:

L - s(n,m) = t(n, m) {L —alr(n,m}] . (6)
Hy taking the log of Eq.(6), we obtain the sum
log{L - s(n, mi} = log{tin, m}] + log{L - aLr(n, mj} (1)

or
P{n, m) = N(nh, m) + M(n, m)

where
P(n, m) = log [L. - 8(n, m}] = "signal + noise*
N(n, m) = log [t(n, m}} = "noise"
M(n, m) = log [L ~ aLr(n, m)) = “signal* .

22




3.2 Filtering Based on the Image Model3

The recovery of the signal from Eq. {7) can be approached by the applica-
tion of Wiener filtering. If we assume that the signal and the noise are uncor-
related, we can reduce the noise by filtering the given degraded image with
the following optimal filter
S (wwy)+ M& . MN . b(wi,wz)

, W )= i (1Y) -
1272 Spp.(wi,wz) + SNN(wi’wZ) + 2MH» MNﬁ(wi‘wZ)

H{w

8,064, )

= EEP-(———)‘ (8)
pp 1“2

where
M“ is the mean value of the given signal M

My is the mean value of the given noise N.

In order to estimate S __, the power spectrum of the aignal plus noise and
SNN' the power agpectrum of the noise, the values L and t(n, m) need to be
calculated. L. was estimated as the highest value in the image and t(n, m) was
estimated by the following:

fa
tin,m) =

I. - S{n, m)
“T-G6 i

where G is a constant which approximates the typical ground reflection
({.e., the average of aLr(n, m)].

The power spectrum of the noise was estimated roughly by the magnitude
squared of the Fourier transform of ?(n, m). Since the transfer function of the
cloud was considered to pogsess only low frequencies, the estimate of this
power spectrum was low-pass filtered. The cross section of the resulting
filter is given in Fig. 9.

The filter has a boost at (w @y = (0, 0) as a result of assuming a non-
zero mean process and an attenuation at the low frequencies. Except for the
value at (0, 0), the filter has basically the same functional form as the gain in
the homomorphic f{iltering approach. It should be noticed that in homomorphic

23
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Fig.9. Cross section of the 2-D
Wiener filter.
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filtering, it is posgsible to sharpen the edges while in the Wiener filter approach,
it is not since |[H(w)| < 1 for all w 5 0.

In general, the noise spectrum density SNN(w v 4) 18 not known accurately
and consgequently, the Wiener filter used to process the noisy image may be
suboptimal. An alternative approach involves iteratively updating the esti-
mate of the gpectral density of the noise. Since an estimate of the reflectance
function aL.r(n, m) is used in determining G in Eq.{9), the improved estimate
of al.r(n, m) obtained from the Wiener filter output can be used to update the
estimate of the noise spectral density, The Wiener filter in Eq. (8) i8 then re-
computed and the original cloudy image is again filtered. If we do this re-
peatedly, the resulting {terative process should converge to a better estimate
than generated by the one-gtep process. In the space domain, the {terative
cloud estimate is given by

~ . L—-8(h,m)
t,(n, m) = “T=d (10a)

where G0 is a constant, From ?t(“' m), we get a better estimate of aL.r(n, m)
denoted by G 1(n, m), and the {teration is continued as

N _ L —=38(n,m)
tk“(n. m) = XY= Gk {10b)
¢t

where C'k is the k™ estimate of the function aLr(n, m).

24




We can introduce a modification of this iteration where, rather than filter-
ing the original cloudy image on each iteration, we filler the updated signal
estimate [i.e., filter Gk 40 m) by using Gk(n, m) to create the new signal esti-
mate Gk +2(0 m)]. In the space domain, the iterative cloud estimate is given by

L - Gk+1

A
tk+z(n,m)= -_I::—GT k=1,... . (11a)

The initial conditions GO and G 4 are estimates as follows:

n - L -8(n,m)
t,(n,m) = -G, (11b)
where GO is a congtant and
Yo, m) = L-snm (11c)
My

Thie procedure appears to generate a better restoration.

3.3 Homomorphic Filtering

The assumption that images and clouds are stochastic processes is very
artificial, A more appropriate approach invokes the assumption that the two
are deterministic processes. In fact, we adopt Schreiber's appmach? which
assumes that both illumination and reflectance contain low and high components
and that the high frequencies are more {mportant for perception. At the same
time, we assume that the transfer function of the cloud contains only low
spatial frequencies. We now interpret Eq.(6) so that t{n, ) is determin-
istic and contains mainly low frequencies and L — al.r{n, m) is also determin-
istic and contains perceptually important high-frequency information. By
uging these assumptions, the image aLr{n, m) can be restored by homomorphic
filtering.

As discussed in Sec. 3.2, both the image illumination and reflectance con-
tain low- and high-{requerncy components. In our application, however, the
perceptually impertant high-frequency component of illumination is actually a
blessing. That is, since light cloud cover is primarily low pass, it can be

25




homomorphically filtered without significantly disturbing the high-frequency
component of the desired image's illumination and reflectance. Of course, the
desired low-frequency components will be altered. Nevertheless, these changes
should reflect themselves simply as illumination changes over large constantre-
gions, thus not disturbing any significant information under the light cloud cuver.

An implied assumption here is that the cloud spectrum contains predomi-
nantly low-frequency components, which motivates the long-space homomor-
phic filtering solution. In fact, this is similar to the assumptions made by
Mitchell et _a___l_.3 in a stochastic framework. However, the thickness of cloud |
cover can change over the extent of an image. Consequently, an adaptive
approach should be better suited to restoring the desired image, i.e., an ap-
proach where the homomorphic filter changes with local cloud characteristics.

In earlier work,6‘8 we developed a locally adaptive contrast enhancement
technique based on high-pass filtering. The local mean of the cloudy image
was used to determine how much gain was applied to the high-frequency-com-
ponents of the image in a particular area. In this way the amount of contrast
inerease was adaptively adjusted across the entire image. The adaptive homo-
morphic filtering approach described here is similar in that measurements
made on local image characteristics are used to determine the homomorphic
filter characteristics.

The adaptive technique can be formulated as follows. Consider applying
a short-gspace window to the noisy signal P(a, m) in Eq. (7):

Pl MUB m) = W‘ glmm P{n,m) = W(n - £M/2, m - kM/2)

s Pla,m) . (12)

Let us assume the window takes on a pyramidal shape and is shifted over the
data at intervals of half its length (i.e., M/2 where M X M is the extent of the
window). Consequently, the window has the following desirable property:

I %

-

L W - 10/2, m -kM/2) =1, (13)
k
Applying an adaptive filter which operates on each segment P‘ k(n. m), we
obtain: '
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ﬁl,k(n. m) = Pl‘k(n'm) » & hl,k(n’ mae)
= [Win = £M/2, m - kM/2) P(n,m)] ** h, ,(n,m, @) (14)
»

where the parameterized fli'er impulse response hl, l{(n, m, 6) is a function of
the vector ©, which is a set of parameters dependent on the local cloud char-
acteristics. (The double asterisk denotes 2-D spatial convolution.) In partic-
ular, © is a function of the DC level of the windowed signal which reflects the
cloud density under the window. Further, the filter is a high pass where the
shape and amplitude depend on 6. Later we will elaborate on this design.
For Eq.(7), the filtering process is then given by

7

B, \(n,m)= (Win = 1M/2, m - kM/2) {log [t m)]

+log[L - aLr(n,m))}) **h, \(n,m,e) . (15)

We assume that the window is "sufficiently smooth" so that the low-pass
nature of the notse term log [t(n, m)] and the high-pass nature of the signal
component lu; [{L ~alr{n, m)]are preserved after windowing. Consider the
case whire the noige and the signal are disjoint in frequency, and the filter
h, _(n,m,0)is an ideal high-pass filtcr whose nonzero energy band matches

L, K
that of the signal, then we can write

pi k(n,m) a Win - 4M/2, m - kM/2) log [L ~aLr(n,m)] . (16)

In practice, however, these asgumptions do not hold exactly, Since the noise
and signal are only approximately disjoint, the noise term will not be entirely
removed, ancd since the filter {8 not an ideal high pass, the signal will not re-
maeain intact, Alternatively, whe. - t, k(R m, 0) adaptively amplifies the high
froquencies and attenuutes the lows, the cloud will be only partially suppressed
{whlle somewhat disturbing the low-iraquency component of log (L. - al.r(n, m)]}
and the high-frequency detail of the desired signal will be enhanced (while
boosting any cloud energy in this region). ‘T'he relation in Eq. 16} represents
an apnroximation of the desired windowed signal along with the effects of any
residual cloud noise. The parameters ©, in h!' k(n. m,0), which rely on the
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local cloud density should be chosen so that the noise is suppressed as much
as posgsible without altering the desired signal.

With these approximations in mird, our reconstruction procedure (which
we refer to as ovcrlap-add) can then, with the use of Eq, (13), be written as

P(n,m} = ‘:, Z W(n — Mk/2, m — Mk/2) log [L ~aLr(n, m)]
Lt k

= log[L - aLr(n,m)] ), ), W(n - Mt/2, m — Mk/2)
Lk
= log [L —aLr(n,m)} . (17)

This procedure is illustrated in Fig. 40. Finally, to obtain an estimate of the
gignal, we exponentiate P(n, m) to recover aLr(n, m).
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Fig.10. Overlap-add technique for adaptive image filtering.
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From the simple model of imaging above clouds, we have concluded that
it is desirable to adaptively attenuate the low frequencies and to amplify the
high frequencies of an image. A filter which has the desirable shape and is
computationally efficient is a circularly symmetric Gaussian which is shifted
to w = 7. A cross section of this filter is given in Fig. 11 where |H(0)| < 1,

Hw,,w,) = A exp|- 5 - BZ +C . (18)

The filter size was chosen to be fixed at 16 X 16. The filter parameters A, B,
and C are functions of the value of the Fourier transform of the windowed data
at (wi,wz) = (0,0) (i.e., the DC value of the pyramid-shaped window). The
filter parameters are given for two extreme DC values: (A1, Bi, C1) for a
DC level of zero and (A2, B2, C2) for a DC level of 225. For a DC value that
lies between these two extremes, the parameters are computed by a quadratic
equation
(¥, - ¥,) + D
Y= 2551 + Y1 for Y=A, B, C (19)

where D denotes the 0C level and where Y1 and YZ represent the two extreme
values of each parameter.

It is desirable that for a low value of the DC level (i.e., little or no cloud
cover), very little attenuation and amplification should be used and, further,
the amplification should be applied to only the very high frequencies (i.e., B,
the standard deviation of the Gaussian shape in Fig. 14, should be small). For
a high DC level {i.e., thick clouds), the attenuation and amplification should
be applied to a wider range of high frequencies (i.e., B should be larger). A
quadratic interpolation for computing A, B, and C was used rather thana
linear interpolation because a larger range of low level of luminance needs
almost no processing.
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Fig. 14. Cross section of a Gaussian
high-pass filter.

3.4 Experimental Results

An experiment was performed in order to compare the Wiener filtering
approach to the homomorphic filtering approach for removing degradations
caused by light cloud cover. An aerial reconnaissance image partially de-
graded by light cloud cover is shown in Fig.12. Figure 13 is the result of the
Mitchell and Delpi algorithm when the estimate of tiie typical ground reflection
G was chosen to be a constant equal to 140. The processed image seems to
contain only the high frequencies of the unprocessed image.

By using the iterative approach described by Egs. (40a) and (410b) one can
improve the estimate of the noise spectrum, Figure 14 contains the result
after three iterations.

Figure 15 is the result after three iterations of improving the estimate
of the noise and also reprocessing the processed {inage as in Eq. (11a), One
can see that the second form of iteration is more desirable,

Long-space homomorphic filtering was examined with two different filters.
Each has a Gaussian shape as described in Sec. 3.3 and a length of 256 x 256
(i.e., the length of the unprocessed image). The parameters of the first filter
are A = 3,65, B = 320, and C = -2.15. The processed image is shown in
Fig. 16. The second filter which sharpens and attenuates more than the first
has the parameters A = 6,21, B = 320, and C = -4.21. The processed image
is {llustrated in Fig. 17. From these results, we can see that there is some




Aerial photograph with some light cloud cover.
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Image processed by application of a global Wiener tilter

Fig. 13.
(See Ref. 1.)

applied to log {L - 8(n, m)}.
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Fig. 15. lmage processed according to Eq. (11) with three iterations.
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4 Fig.16. Image processed with a long-space homomorphic high-pass filter
with parameters A=3.65 B=320,8ndCs= ~2.45.
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Fig. 17. Image processed with a long-space homomorphic high-pass filter
with parameters A = 6.21, B = 320, and C = —4.21.
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sharpening but most of the cloud was not removed and, therefore, some ob-
jects were not exposed. '
In the adaptive homomorphic filtering approach, a pyramidal window of
' size 16 X 16 was chosen and the parameters ranges are given in Table I. The
filter shapes are shown in Fig. 18, and the processed image is illustrated in
Fig. 19.

TABLE |

RANGE OF PARAMETERS FOR THE ADAPTIVE
HOMOMORPHIC FILTERING

bC 0 255

A 0.2 1.82

B 5.0 20.0

C 0.9 -0.32
wo §

Fig. 18. Range of filter shapes {or adaptive homomorphic system.
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rig. 19. Image processed with adaptive homomorphic filter.
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We see from our results that the most desirable restoration, i.e., maxi-
mum suppression of the cloud and enhancement of the objects, was achieved
by adaptive homomorphic filtering. We are beginning to explore implementa-
tion strategies for this algorithm to {mprove its computational efficiency.

4, ERRORS CAUSED BY TRUNCATION EFFECTS

IN THE ITERATIVE IMPLEMENTATION OF

MULTI-DIMENSIONAL DIGITAL FILTERS

When an iteration is used to compute successively better approximations
to the output of a digital filter, the effective impulse response grows in exient
at each i{teration. For the case where the frame storage buffer has a fixed
size, the extent of the successive output estimates is limited by the buffer size,
resulting in spatial truncation errors which affect successive approximations
to the desired output signal. In this section, we shall discuss our preliminary
findings on truncation errors and their relation to boundary conditions. We
begin by giving a brief review of the iterative implementation.

4.1 Brief Review of the Iterative Implementation

The iterative filter possesses an interesting structure to implement, since
it involves FIR (finite-extent impulse response) filtering operations as well as
the feedback of buffered output image frames. Because of this frame feedback,
the iterative filter can be used to approximate the output of a 2-D symmetric
rational transfer function. Consider the filter frequency response of the form

A(w‘,wz)

Hw

where A(w o up) and Plu,,w,) are 2-D trigenometric polynomials with coeffi-
cieants a(n 4 "3) and b(n . :\2). respectively. With appropriate normalization,
we can write

Blog,w,) = 1 = Clw,,w,) ' {24)

where C(w gl 2) is another trigonometric polyncmial with coefficients c(n g ny ).
Let us filter an {nput image x(n g0yl to obtain an output imsage ying, n,) Then
x(ny, n,) and y(nt. “z’ gatisly the implicit relation

<




y(ng, n,) =aln,,n,) ¥¥ x(ng,n,) + c(ng, n,) ** yfgi.nz) (22)

where the double asterisk denotes 2-D convolution., We can use thig relation
iteratively to generate successively better approximations to y(n 4002 ). Letting
i denote the iteration number, we can write

yifn 1) =aln, ny) ¥* x(n,,ny) +cn,,n,) **y_,(n,n0,) (23a)
or in the frequency domain
Yilw,, 0} = Aoy, w,) Xlw,,w,) + Cluy,wy) ¥ lw,w,) o (23b)

The subscript i on the input image X;(ny. n,) is included to indicate that the
iterative implementation may be generalized to accept sequences of image
frames as its input. Similarly, the image sequence VAL n,) may be regai-ded
as a succession of image frames. At thig point, it is natural to consider the
iteration index i as a time variable.

Figure 20 shows a simple block diagram for the iterative implementation
which highlights the basic operations. There are two FIR filtering operations,
denoted by the boxes labeled A(w‘,wz) and C(“’i' wz). a summing node, and a
frame storage buifer.

a%)rﬁ : - | V“

{
5 imy,ny) ‘] 5 yi (e ng)
! T
A lw, wy) Cloruy) T8
Hlw . wyl T:‘EW €

Yialryeny)

Fig. 20. Block diagram of the 2-D iterative filter implementation.




4,2 Characterization of the Truncation Error

The operation of truncation is particularly important since we cannot deal
in practice with infinitely long sequences. Because the output of a rational
filter has infinite extent in general, errors will be introduced by repeated
truncation snd may become intolerably large over the limited domain of the
~output signal. The error over this limited region can be viewed as the solu-
tion to a homogeneous partial difference equation with specified boundary con-
ditions. In particular, the error is linearly dependent on values of the ideal
solution along the boundary of the region remaining after truncation.

The iteration (23a) cen be written in operator notation as

yi(ngny) = Fy; 4 (n,,n,) (24)
where T' is an operator of the form
Fy(ni,nz) = a(ni,nz) ¥ % x(ni,nz) + c(ni,nz) * % y(ni,nz) . (25}
Under the appropriate assumptions, therz exists a unique solution y(ni. na) =
Fy(n 1 nz). When the size of the frame buffer is exceeded, the 2-D signal

yy(ny,n,) must be truncated in extent. This introduces a {runcation operator
T into the iteration, giving Eq. (24) the form

vy . 0,) = TR, ,(n,,n,) (26)
where

y(ng,n,}  for (n,,n,) €1

Tyln,,n,) =
e 0 for (n,,n,) 1 . (27)

(The region I can b2 thought of as representing the extent of the frame buffer.)
The iteration (26) also can be shown to have a unique solution 9(n i.nz) z
TF?(n 1 nz). In general, the solution to Lq. (24), y(ni. n, ) will not be equal
to 9(n L nz). The difference batween these two signala {s attributable to the
truncation effecta. Let us define the truncation error ag

a)
e(ni'nz) =.Y(¥‘-1.ﬂz)"'y(ni.n2) . (‘?'8’
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It can be shown that the error signzl e(n g nz) satisfies an iteration which
corresponds to driving Eq. (23a) with no input [xi(n 1 nz) = 0] but imposing
boundary conditions around the edges of the region I. Let us consider a re-
gion I which surrounds the region I. ‘The extent of Ib depends on the extent
of impulse response c(n 1 nz) in Eq. (23a). We can now define the boundary
conditions bnd(n 1 nz) to be

l Y(“i'“z) for (“i*“z) €1y
bnd(ni,nz) = I
0 elsewhere . (29)

Then the error signal e(n 1 nz) satisfies the iteration

ei(ni,na) = T{c(ni,nz) ¥ e ]+ bnd(ni,na)

i-1(84:85)

for (ni,nz) €1+, . (30)

The energy in the error signal can be shown to be proportional to the energy
in the boundary condition signal bnd(n T nz). Thusa, if the size of the frame
buffer (and hence the extent of the region I) is large enough, one would expect
that the correct solution y(n g+ 0y) (and hence the boundary condition signal
bnd(n o 2)) would be small in the region I In this case, the error signal
e(n n, ) also will be small, and y(n ) will be a good approximation to the
:ieswed output signal y(n z). murthex‘more, the error can be eliminated by
including the boundary condition information bnd(n " ?.) in the spatially trun-
cated iteration, giving it the form

yi“ o ) = 'I‘Pyi 1“‘1‘“") + bnd(ni,nz)

for (‘“'1_‘“2)6 1+ Ib . (34}

5. POTENTIAL ARCHITECTURES FOR THE ITERATIVE
IMPLEMENTATION OF MULTI-DIMENSIONAL DIGITAL
FILTERS

In this section, we shall examine some architecturs=s which support the
iterative implementation of multi-dimensional digital filters. We begin by
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discussing possible data-handling approaches and their implications with re-
gpect to architectures. Later, we shall take a "software" point of view and
discuss the problem of partitioning signal-processing operations among several
processors in a multiprocessor architecture.

Referring back to Fig.20, we see that the iterative implementation con-
sists of two FIR filtering operations, denoted by the boxes labeled A(w v 2)
and C(w 1’“’2)' a summing node, and a frame storage buffer. Consequently,
much of the discussion of processing architectures will be directed toward
the efficient implementation of multi-dimensional FIR filters.

5.1 Image Flow Options

There are three popular methods for describing how a sequence of images,
each composed of many picture elements (pixels), may flow through a signal-
processing architecture. The iterative implementation as diagrammed in
Fig. 20 suggests a "frame-by-frame" image flow which might result naturally
from a lens imaging system; all the image pixels from a given frame are
available simultaneously. One of the major problems with this image flow is
providing the large number of parallel data paths necessary to shuttle entire
images around the processing structure. Conversely, one advantage is the
relatively long available data transfer time, typically 1/30 s. Consequently,
there is flexibility in trading data transfer time for the number of data paihs
using multiplexors and demultiplexors,

At the other extremc of the image-data-flow spectrum we have the "ge-
quential pixel® flow. All the pixels in an {mage are transferred one after
another (multiplexed), followed by the pixels of the next image frame, and so
on. The processing structure sees a continuing stream of pixel values. This
serial flow of image data can result from sensors such as the flying spot
scanner, where a single detector is swept across an image in a raster scan.
With the sequential pixel flow, only one data path is needed since all the pixels
are multiplexed into a single stream. However, the data transfer rates can
become quite large. For a high resolution 1024 x 1024 image, the data trans-
fer rate is approximately 30M pixels/second.
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The "parallel row" image flow offers a compromise between the frame-
by-frame and the sequential pixel image flows. The parallel row image flow,
as the name implies, transfers rows of image data in parallel, but the pixels
within each row are transferred serially. This serves to reduce the number
of parallel data paths compared to the frame-by-frame method, and yet it does
not require the high transfer rates of the sequential pixel method. Unfortu-
nately, the number of parallel data paths required may still be large for typica
image data. The parallel row image flow seems potentially well suited to
sensor systems consisting of a linear array of detectors; each row of the
image corresponds to data from one of the detectors.

5.2 An Architecture for Iterative Filters Using Sequential
Pixel Image Flow '

As we saw in Fig. 20, the iterative filter containsa two 2-D FIR convolu-
tions, so let us begin by examining the structure for convolution with a sequen-
tial pixel image flow. The approach isg straightforward; basically, it consists
of a pixel buffer which allows simultaneous access to all the input pixels neede:
to compute a particular output pixel. Figure 21 shows the implementation of
a 3 X 3 FIR filter on a sequential pixel stream. The unit delays in conjunction
with the shift register delays form the necessary pixel buffer., The length of
the shift register is two less than the length of an image row, so that a shift
register delay plus two unit delays will buffer an entire row of pixels. The
appropriate nine pixels are multiplied by the FIR filter coefficients and then
summed to form a single output pixel. The gating logic shown in Fig. 21 allow:
one or more of the product terms to be zeroed out; this is necessary to handle
edge pixels in the images and the boundary between images.

The convolution operation shown in Fig.24 may now be used in the {imple-
mentation of the iterative filter. In effect, Fig.21 is ingerted into the boxes
labeled A(w,,w,) and C(wi.wz) in Fig. 20, The frame storage buffer in Fig. 20
can be implemented with a shift register whose length is equal to the number
of pixels in an image. It may even be possible to combine the two filter output
accumulators with the summing node in Fig.20 for more efficient operation,
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Fig.22. Structure for a row-parallel convolution. (Braces represent
coefficient multiplication, accumulation, and gating.)
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There are some flexibility problems with this approach. The size of the
pixel buffer in Fig. 24 depends on the size of the FIR filter being implemented,
as does the number of coefficient multipliers, control gates, and accumulator
inputs. A structure designed to implement convolutions of a fixed size, say
3 X 3, would not be able to implement larger-size convolutions. On the other
hand, a processor designed to support an 11 X 14 convolution would not be
making full use of its computational potential when implementing any smaller-
size convolutions. Furthermore, the sizes of the frame storage buffer in
Fig. 20 and the gating logic signals in Fig.24 depend on the number of pixels
per image.

The exact length of the frame storage huffer aiso depends on the assumed
regions of support for the impulse responses a(n 4 nz) and c(n g nz). If a(n 1 nz)
and c(n 0 nz) are 3 X 3 with first quadrant -support, then the length of the frame
buffer is equal to the number of pixels i an image. However, if a(n L nz) and
c(n,, nz) are 3 X 3 but centered on the origin, the frame buffer length must be
shortened by one row plus one pixel {0 ensure that the forward pixel stream
and the feedback pixel stream are properly synchronized. This detail further
reduces the flexibility of this structure for implementing a variety of iterative
filters on a variety of image sizes.

5.3 Row Parallel Architectures

The structure for implementing an iterative filter with a row parallel
image flow is quite simila. in style tc the sequential pixel structure discussed
above. However, there are some differences in implementation. For example,
there is no longer a need for the shift register delays in Fig. 24 since input
pixels are available in pareallel. Also, the generation of the output pixels in
parallel requiree the veplication of the coefficient multipliers and the accumu-
lator in Fig. 24. Thus, the corra2sponding structure for the implementation of
an FIR filter with rc # parallel image flow takes the form shown in Fig.22.
The brackets represent the mxilttplteatton by filter coefficients, gating, and
accumulation functions shown expllcitly- in Fig.21. The brackets alao serve
to indica:e the inter-row communication which {8 necessary to implement a
finite-¢ ctent convolution.
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The structure of Fig. 22 may be substituted for the boxes labeled A(w 1 wz)
and C(w g wz) in Fig. 20 to implement an iterative filter. Because of the row
parallel image flow, the number of data paths in the iterative filter is equal to
the number of rows. This number may be prohibitively large for many appiica-
tions; pixels may have to be multiplexed to share a smaller number of data
paths. This, of course, leads us back in the direction of the sequential pixel
image flow.

The row parallel structure algso suffers from the inflexibilities described
in Sec.5.2. The nuraber of unit delays, the amount of inter-row communica-
tions, and the number of coefficient multipliers depend on the size of the con-
volutions being implemented. The size of the frame buffer in Fig. 20 depends
on the image size as before.

We shall just mention the frame-by-frame image flow in passing, since
the number of parallel data paths required, equal to the number of pixels in
an image, is impossibly large for current technology. Each output pixel in a
given frame is computed in parallel with all the others. For each convolution,
this requires a set of coefficient multipliers and accumulators for each pixel.
Reducing the number of multipliers and accumulators by multiplexing essen-
tially leads us back toward the row parallel and sequential pixel image flows.

5,4 Multiprocessor Architectures and Algorithm Partitioning

The architectures discussed in Sec. 5,2 and 5.3 were derived from the
block diagram of Fig.20. They seem to posseas a certain inflexibility, or
hardwired characteristic, that potentially limits their usefulneas, although a
clever designer may be able to introduce more flexibility into the structure by
using random access buffers and microprocessor-controlled multiplexing of
the multiplication and accumulation hardware.

Alternatively, we can try a software-oriented approach to the problem of
implementing an iterative filter. A single processor with an appropriate
amount of random access memory can be atraightforwardly programmed to
cycle through the necessary computations to produce the output image frames
one pixel at a time. Now suppose we have a number of processors at our dis-
posal. The problem becomes one of partitioning the image processing
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algorithm, in this case the implementation of an iterative filter, so that each
processor is kept busy and is working as independently as possible.

Realistically, the number of processors will be relatively small, say 8.
We can partition the image into strips or blocks and assign to each processor
the responsibility for computing the output pixels in a particular block, If the
size of the block is large compared to the extent of the FIR impulse responses
used in the iterative filter, each processor can run independently, as if it were
a single processor working on a smaller image, to compute the necessary
convolutions on each iteration. Care must be taken where the blocks abui;
some inter-processor communication is necessary, either to transfer partially
computed output pixels or extra input pixels to neighboring processors.

If one of the processors breaks down, then one block in each output image
frame will be garbled or missing. (This block could be moved around from cne
frame to the next by reassigning processors.) Consequently, this partitioning of
the problem does not lead to a very robust implementation. As an alternative,
we could subsample the input image frame to obtain several smaller, lower-
resolution subimages. A processor could be assigned to process each sub-
image, and the full output image could be constructed by appropriately inter-
lacing the processed subimages. For example, Fig.23 shows how an 8 X8 image
may be partitioned among p = 8 processors. Now each processor has only one-
elghth of the input pixels to handle but, for a finite~extent convolution, it must
generate a term to contribute to each output pixel in the full image. Each term
is roughly one-eighth as complicated as the full sum of products needed to com-
pute a single output pixel, so the amount of computation performed by each

D)

041504 8

2136273

Fig. 23, Partitioning the pixels 1 5061804
in an image among 8 processors. °

The numbers indicate the pro- T 3627136 2

cessor (pf to p7) to which each

pixel is assigned. 0418041y

6 2736273

1 504 ) 80 4

T362 17362

57

N R O i




processor is essentially the same as if it were computing an output subimage
independently of the other processors.

This notion can be made a little more concrete with the example of a
3 X 3 convolution. The output pixel at (n e nz) is given by

w(ni,nz) = a(~1,~-1) x(ni + i,nz +2) +a(~-1,0) x(n1 + 1,nz)
+ a(—1,1) x(n1 + 1,n2 ~1} + a(0,-1) x(mi,n2 + 1)
+ (0, 0) x(ni,nz) + a(0,1) x(ni,n2 -~ 1)
+a(1,-1) x(n, - i,nz + 1) +a(1,0) x(n, — 1,n2)

+a(1,1)x(ni-—1,n2-—-1) . (32)

If the input image is partitioned as in Fig,23, then processor pf must
compute the following terms and send them to the other processors:

Source Destination

Processor Processor Term For Output Pixel
p¢ p¢ a(ob 0) X(ni' nz) W(ni. nz)
pi - -
p2 a(1, 1) x(ny —2,n, +2) w(ni--i,nz + 1)

+ a(-1,1) x(ni. “2)

p3 a(1,1) x(n w(n‘ +1,n, + 1)

40 B5)
+ a(—1,-4) )t:(n1 +2, n, + 2)

p a(4, 0) x(n,, n,)

p5

p?

a(-4, 0) x(n,, n,)
a(0, 1) x(n‘. nz)

a(0,1) x(n,, “z’

W(n‘ +1,n0,)
w(n‘ - i.nz)
w(ni. n, -~ 1)

w(n‘.n2 + 1)




Similarly, processors pi to p7 must deliver partial resuilts to all 8 proces-
sors. Then the partial results can be accumulated to generate the output pixels
assigned to each processor.

Let us look briefly at the amount of memory required. We shall assume
that image frames consist of N2 pixels and there are P processors. Each
processor needs an NZ/P-pixel input buffer and an Nz/ P-pixel output buffer.

In addition, each processor must have NZ(P — 1)/P storage locations for saving
the partial results which will be sent to the other (P — 1) processors. Conse-
quently, the total amount of storage required for all processors is NZ(P +1)
pixels.

When the processors are done computing the partial outputs, they need to
send and receive data to allow them to finish computing the output pixels. We
need to postulate an interprocessor switch to accomplish this communication.
The pf output is coupled to the pi input while the pt output is coupled to the
p2 input, and so on. Then p§ communicaies with p2, p1 with p3, and so on.
After P — 1 settings of the switch, the final output pixels can be computed. The
total number of pixels transmitted over the interprocessor switch is NZ(P -1),
but because of the parallelism only Nz(P - 1)/P transfer cycles are used.

The amount of memory used by each processor to buffer the intermediate
results can be reduced if the intermediate results can be transmitted shortly
after they have been computed., Obviously, the number of pixels transferred
and the number of transfer cycles needed do not change; more frequent trans-
fers of shorter data blocke occur.

5.5 Conclusions

The ideas outlined herein should be regarded as preliminary. Neverthe-
less, some conclusions can be drawn. First, the development of a structure
for implementing iterative filters based on the block diagram in Fig. 20 seems
to lead to rather inflexible architectures. Second, for particular applications,
the type of image flow may depend on the type of sensor (flying spot vs linear
array vs lens). Multiplexors and demultiplexors may be used to translate
from one image flow to another, of course, but processing architectures may
have to be gensitive to the differences in image flows in a real-time application.
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At the moment, there seem to be two interesting methods for partitioning
the filtering operation which deserve closer scrutiny. The first involves
assigning each processor to compute the output pixels in a particular block of
the output image frame; the second assigns a subsampled image to each pro-
cessor so that the effects of a malfunctioning processor will be more diffuse
and perhaps less deleterious.
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